
Simulink Control Design
For Use with Simulink®

Modeling

Simulation

Implementation

Reference
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink Control Design Reference
© COPYRIGHT 2004–2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 Online only New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.2 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)

Contents

Functions — Categorical List

1
Linearization Analysis I/Os . 1-2

Operating Points . 1-2

Linearization . 1-3

Functions — Alphabetical List

2

Blocks — Alphabetical List

3

Index

i

ii Contents

1

Functions — Categorical
List

Linearization Analysis I/Os (p. 1-2) Functions for creating and setting
linearization analysis I/Os

Operating Points (p. 1-2) Functions for creating and working
with operating points

Linearization (p. 1-3) Functions for linearizing Simulink
models

1 Functions — Categorical List

Linearization Analysis I/Os
get Get properties of linearization I/Os

and operating points

getlinio Get linearization I/O settings for
Simulink model

linio Construct linearization I/O settings
for Simulink model

set Set properties of linearization I/Os
and operating points

setlinio Assign I/O settings to Simulink
model

Operating Points
addoutputspec Add output specification to operating

point specification

copy Create copy of operating point or
operating point specification

findop Find operating points from
specifications or simulation

get Get properties of linearization I/Os
and operating points

getinputstruct Extract input structure from
operating point

getstatestruct Extract state structure from
operating point

getxu Extract states and inputs from
operating points

initopspec Initialize operating point
specification values

1-2

Linearization

operpoint Create operating point for Simulink
model

operspec Create operating point specifications
for Simulink model

set Set properties of linearization I/Os
and operating points

setxu Set states and inputs in operating
points

update Update operating point object with
structural changes in model

Linearization
findop Find operating points from

specifications or simulation

getlinio Get linearization I/O settings for
Simulink model

getlinplant Compute open loop plant model from
Simulink diagram

linearize Create linearized model from
Simulink model

linio Construct linearization I/O settings
for Simulink model

linoptions Set options for linearization and
finding operating points

operpoint Create operating point for Simulink
model

operspec Create operating point specifications
for Simulink model

1-3

1 Functions — Categorical List

1-4

2

Functions — Alphabetical
List

addoutputspec

Purpose Add output specification to operating point specification

Syntax opnew=addoutputspec(op,'block',portnumber)

Graphical
Interface

As an alternative to the addoutputspec function, add output
specifications with the Simulink® Control Design GUI. See
“Constraining Outputs”.

Description opnew=addoutputspec(op,'block',portnumber) adds an output
specification for a Simulink model to an existing operating point
specification, op, created with operspec. The signal being constrained
by the output specification is indicated by the name of the block,
'block', and the port number, portnumber, that it originates from.
You can edit the output specification within the new operating point
specification object, opnew, to include the actual constraints or
specifications for the signal. Use the new operating point specification
object with the function findop to find operating points for the model.

This function will automatically compile the Simulink model, given in
the property Model of op, to find the block’s output portwidth.

Example Create an operating point specification for the model magball.

op=operspec('magball')

This returns the object op. Note that there are no outports in this model
and no outputs in the object op.

Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(2.) magball/Magnetic Ball Plant/Current

2-2

addoutputspec

spec: dx = 0, initial guess: 7
(3.) magball/Magnetic Ball Plant/dhdt

spec: dx = 0, initial guess: 0
(4.) magball/Magnetic Ball Plant/height

spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs: None

To add an output specification to the signal between the Controller block
and the Magnetic Ball Plant block, use the function addoutputspec.

newop=addoutputspec(op,'magball/Controller',1)

The output specification is added to the operating point specification
object.

Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(2.) magball/Magnetic Ball Plant/Current
spec: dx = 0, initial guess: 7

(3.) magball/Magnetic Ball Plant/dhdt
spec: dx = 0, initial guess: 0

(4.) magball/Magnetic Ball Plant/height
spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs:

2-3

addoutputspec

(1.) magball/Controller
spec: none

Edit the output specification to constrain this signal to be 14.

newop.Outputs(1).Known=1, newop.Outputs(1).y=14

MATLAB® displays the final output specification.

Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(2.) magball/Magnetic Ball Plant/Current
spec: dx = 0, initial guess: 7

(3.) magball/Magnetic Ball Plant/dhdt
spec: dx = 0, initial guess: 0

(4.) magball/Magnetic Ball Plant/height
spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs:

(1.) magball/Controller

spec: y = 14

See Also findop, operspec, operpoint

2-4

copy

Purpose Create copy of operating point or operating point specification

Syntax op_point2=copy(op_point1)
op_spec2=copy(op_spec1)

Description op_point2=copy(op_point1) returns a copy of the operating point object
op_point1. You can create op_point1 with the function operpoint.

op_spec2=copy(op_spec1) returns a copy of the operating point
specification object op_spec1. You can create op_spec1 with the
function operspec.

Note The command op_point2=op_point1 does not create a copy of
op_point1 but creates a pointer to op_point1. In this case any changes
made to op_point2 will also be made to op_point1.

Example Create an operating point object for the model, magball.

opp=operpoint('magball')

MATLAB displays the operating point.

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

2-5

copy

Inputs: None

Create a copy of this object, opp.

new_opp=copy(opp)

MATLAB displays an exact copy of the object.

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Inputs: None

See Also operpoint, operspec

2-6

findop

Purpose Find operating points from specifications or simulation

Syntax [op_point,op_report]=findop('model',op_spec)
[op_point,op_report]=findop('model',op_spec,options)
op_point=findop('model',times)

Graphical
Interface

As an alternative to the findop function, create operating points from
specifications or simulation within the Operating Points node of the
Simulink Control Design GUI. See “Computing Operating Points from
Specifications” and “Extracting Operating Points from Simulation” in
the online documentation.

Remarks Finding operating points from specifications using the findop function
is the same as trimming, or performing trim analysis. Use the findop
function instead of the Simulink trim function when working with
Simulink Control Design operating point objects and specification
objects.

Description [op_point,op_report]=findop('model',op_spec) finds an operating
point, op_point, of the model, 'model', from specifications given in
op_spec.

[op_point,op_report]=findop('model',op_spec,options) finds an
operating point, op_point, of the model, 'model', from specifications
given in op_spec. Several options for the optimization are specified in
the options object, which you can create with the function linoptions.

The input to findop, op_spec, is an operating point specification
object. Create this object with the function operspec. Specifications on
the operating points, such as minimum and maximum values, initial
guesses, and known values, are specified by editing op_spec directly or
by using get and set. To find equilibrium, or steady-state, operating
points, set the SteadyState property of the states and inputs in op_spec
to 1. The findop function uses optimization to find operating points
that closely meet the specifications in op_spec. By default, findop uses
the optimizer graddescent_elim. To use a different optimizer, change
the value of OptimizerType in options using the linoptions function.

2-7

findop

A report object, op_report, gives information on how closely findop
meets the specifications. The function findop displays the report
automatically, even if the output is suppressed with a semicolon. To
turn off the display of the report, set DisplayReport to 'off' in
options using the function linoptions.

op_point=findop('model',times) runs a simulation of the model,
'model', and extracts operating points from the simulation at the
snapshot times given in the vector, times. An operating point object,
op_point, is returned.

For all syntaxes, the output of findop is an operating point object. Use
this object with the function linearize to create linearized models
of Simulink models. The operating point object has the following
properties:

• “Model” on page 2-8

• “States” on page 2-8

• “Inputs” on page 2-9

• “Time” on page 2-9

Model

Model specifies the name of the Simulink model that this operating
point object refers to.

States

States describes the operating points of states in the Simulink model.
The States property is a vector of state objects that contains the
operating point values of the states. There is one state object per block
that has a state in the Simulink model. The States object has the
following properties:

Nx Number of states in the block. This property is
read-only.

Block Block that the states are associated with

2-8

findop

x Vector containing the values of states in the block

Ts Vector containing the sample time and offset for
the state

SampleType CSTATE for a continuous state or DSTATE for a
discrete state

inReferencedModel1 when the state is inside a referenced model or 0
when it is not

Description String describing the block

Inputs

Inputs is a vector of input objects that contains the input levels at the
operating point. There is one input object per root level inport block in
the Simulink model. The Inputs object has the following properties:

Block Inport block that the input vector is associated
with

PortWidth Width of the corresponding inport

u Vector containing the input level at the operating
point

Description String describing the input

Time

Time specifies the time at which any time-varying functions in the
model are evaluated.

The operating point report object, returned when finding operating
points from specifications, has the following properties:

• Model

• Inputs

2-9

findop

• Outputs

• States

• Time

• TerminationString

• OptimizationOutput

Of these properties, Model, Inputs, Outputs, States, and Time
contain the same information as the operating point specification
object, with the addition of dx values for the States and yspec
values, or desired y values, for the Outputs. The TerminationString
contains the message that findop displays after terminating the
optimization. The OptimizationOutput property contains the same
properties returned in the output variable of the Optimization Toolbox
functions fmincon, fminsearch, and lsqnonlin. See the Optimization
Toolbox documentation for more information. If you do not have the
Optimization Toolbox, you can access the documentation at

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.shtml

Examples Example 1

Create an operating point specification object for the model magball
with the operspec function.

op_spec=operspec('magball');

Edit the operating point specification object to reflect any specifications
on the operating points such as minimum and maximum values, initial
guesses, and known values. This example uses the default specifications
in which SteadyState is set to 1 for all states, specifying that an
equilibrium operating point is desired.

Find the equilibrium operating points with the findop function.

op_point=findop('magball',op_spec)

This returns an operating point object, op_point.

2-10

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.shtml

findop

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

x: 0
x: -2.56e-006

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Inputs: None

MATLAB displays the name of the model, the time at which any
time-varying functions in the model are evaluated, the names of blocks
containing states, and the operating point values of the states. In this
example there are four blocks that contain states in the model and
four entries in the States object. The first entry contains two states.
MATLAB also displays the Inputs field although there are no inputs
in this model. To view the properties of op_point in more detail, use
the get function.

MATLAB also displays the operating point report object.

Operating Point Search Report for the Model magball.
(Time-Varying Components Evaluated at time t=0)

Operating condition specifications were successully met.

States:

(1.) magball/Controller/Controller

x: 0 dx: 0 (0)
x: -2.56e-006 dx: 0 (0)

2-11

findop

(2.) magball/Magnetic Ball Plant/Current
x: 7 dx: 0 (0)

(3.) magball/Magnetic Ball Plant/dhdt
x: 0 dx: -1.78e-015 (0)

(4.) magball/Magnetic Ball Plant/height
x: 0.05 dx: 0 (0)

Inputs: None

Outputs: None

In addition to the operating point values, the report shows how closely
the specifications were met. In the report above, the dx values are
all small and close to the desired dx values of 0 indicating that an
equilibrium or steady-state value was found.

Example 2

To extract an operating point from a simulation at the times 10 and 20,
you can use findop in the following way.

op_point=findop('magball',[10,20])

This returns the message

There is more than one operating point. Select an element
in the vector of operating points to display.

To display the first operating point, enter the command

op_point(1)

This should display

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=10)

States:

2-12

findop

(1.) magball/Controller/Controller
x: -4.82e-010
x: -2.56e-006

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 2.6e-006

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Inputs: None

To display the second operating point, enter

op_point(2)

This returns

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=20)

States:

(1.) magball/Controller/Controller

x: -5.5e-010
x: -2.56e-006

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 2.54e-006

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Inputs: None

See Also operspec, linearize

2-13

get

Purpose Get properties of linearization I/Os and operating points

Syntax get(ob)
get(ob,'PropertyName')
ob.PropertyName

Graphical
Interface

As an alternative to the get function, view properties of linearization
I/Os and operating points with the Simulink Control Design GUI. See
“Inspecting Analysis I/Os” and “Specifying Operating Points”.

Description get(ob) displays all properties and corresponding values of the object,
ob, which can be a linearization I/O object, an operating point object,
or an operating point specification object. Create ob using findop,
getlinio, linio, operpoint, or operspec.

get(ob,'PropertyName') returns the value of the property,
PropertyName, within the object, ob. The object, ob, can be a
linearization I/O object, an operating point object, or an operating
point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

ob.PropertyName is an alternative notation for displaying the value of
the property, PropertyName, of the object, ob. The object, ob, can be
a linearization I/O object, an operating point object, or an operating
point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

Examples Create an operating point object, op, for the Simulink model, magball.

op=operpoint('magball');

Get a list of all object properties using the get function with the object
name as the only input.

get(op)

This returns the properties of op and their current values.

2-14

get

Model: 'magball'
States: [4x1 opcond.StatePoint]
Inputs: []

Time: 0

To view the value of a particular property of op, supply the property
name as an argument to get. For example, to view the name of the
model associated with the operating point object, type

V=get(op,'Model')

which returns

V =
magball

Since op is a structure, you can also view any properties or fields using
dot-notation, as in this example.

W=op.States

This returns a vector of objects containing information about the states
in the operating point.

(1.) magball/Controller/Controller
x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Use get to view details of W. For example

get(W(2),'x')

2-15

get

returns

ans =
7.0036

See Also findop, getlinio, linio, operpoint, operspec, set

2-16

getinputstruct

Purpose Extract input structure from operating point

Syntax in_struct = getinputstruct(op_point)

Description in_struct = getinputstruct(op_point) extracts a structure of
input values, in_struct, from the operating point object, op_point.
The structure, in_struct, uses the same format as Simulink which
allows you to set initial values for inputs in the model within the Data
Import/Export pane of the Configuration Parameters dialog box.

Example Create an operating point object for the f14 model:

op_f14=operpoint('f14');

Extract an input structure from the operating point object:

inputs_f14=getinputstruct(op_f14)

This returns

inputs_f14 =

time: 0
signals: [1x1 struct]

To view the values of the inputs within this structure, use dot-notation
to access the values field:

inputs_f14.signals.values

In this case the value of the input is 0.

See Also getstatestruct, getxu, operpoint

2-17

getlinio

Purpose Get linearization I/O settings for Simulink model

Syntax io = getlinio('sys')

Graphical
Interface

As an alternative to the getlinio function, view linearization I/Os in
the Analysis I/Os panel of the Linearization Task node within the
Simulink Control Design GUI. See “Inspecting Analysis I/Os”.

Description io = getlinio('sys') finds all linearization annotations in the
Simulink model, sys, and returns a vector of objects, io. Each object
represents a linearization annotation in the model and is associated
with an output port of a Simulink block. Before running getlinio, use
the right click menu to insert the linearization annotations, or I/Os, on
the signal lines of the model diagram.

Each object within the vector, io, has the following properties:

Active 'on' when the I/O will be used for linearization
and 'off' otherwise

Block Name of the block the I/O is associated with

OpenLoop 'on' when the feedback loop at the I/O is open
and 'off' when it is closed

PortNumber Integer referring to the output port the I/O is
associated with

Type Linearization I/O type

• 'in': linearization input point

• 'out': linearization output point

• 'outin': linearization output then input
point

• 'inout': linearization input then output
point

Description String description of the I/O object

2-18

getlinio

You can edit this I/O object to change its properties. Alternatively, you
can change the properties of io using the set function. To upload an
edited I/O object to the Simulink model diagram, use the setlinio
function. Use I/O objects with the function linearize to create linear
models.

Example Before creating a vector of I/O objects using getlinio, you must add
linearization annotations representing the I/Os, such as input points or
output points, to a Simulink model.

Open the Simulink model magball by typing

magball

at the MATLAB prompt. Right-click the signal line between the
Magnetic Ball Plant and the Controller. Select Linearization
Points > Input Point from the menu to place an input point on this
signal line. A small arrow pointing towards a small circle just above
the signal line represents the input point. Right-click the signal line
after the Magnetic Ball Plant. Select Linearization Points > Output
Point from the menu to place an output point on this signal line. A
small arrow pointing away from a small circle just above the signal
line represents the output point. The model diagram should now look
like that in the following figure.

2-19

getlinio

��������	��
��������	��

To create a vector of I/O objects for this model, type

io=getlinio('magball')

This returns a formatted display of the linearization I/Os.

Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
- No Loop Opening
- An Input Perturbation

2-20

getlinio

Block magball/Magnetic Ball Plant, Port 1 is marked with the
following properties:
- An Output Measurement
- No Loop Opening

There are two entries in the vector, io, representing the two
linearization annotations previously set in the model diagram.
MATLAB displays the name of the block associated with the I/O, the
port number associated with the I/O, the type of IO (input perturbation
or output measurement referring to an input point or output point
respectively), and whether the IO is also a loop opening. By default, the
I/Os have no loop openings. Display the properties of each I/O object in
more detail using the get function.

See Also get, linearize, linio, set, setlinio

2-21

getlinplant

Purpose Compute open loop plant model from Simulink diagram

Syntax [sysp,sysc] = getlinplant(block,op)
[sysp,sysc] = getlinplant(block,op,options)

Description [sysp,sysc] = getlinplant(block,op) Computes the open loop
plant seen by a Simulink block labeled block (where block specifies the
full path to the block). The plant model, sysp, and linearized block,
sysc, are linearized at the operating point op.

[sysp,sysc] = getlinplant(block,op,options) Computes the
open loop plant seen by a Simulink block labeled block, using the
linearization options specified in options.

Example To compute the open loop model seen by the Controller block in the
Simulink model magball, first create an operating point object using
the function findop. In this case the operating point is found from
simulation of the model.

op=findop('magball',20);

Next, compute the open loop model seen by the block
magball/Controller, with the getlinplant function.

[sysp,sysc]=getlinplant('magball/Controller',op)

The output variable sysp gives the open loop plant model as shown
below.

a =
magball/Magn magball/Magn magball/Magn

magball/Magn -100 0 0
magball/Magn -2.798 0 195.7
magball/Magn 0 1 0

b =
magball/Cont

magball/Magn 50

2-22

getlinplant

magball/Magn 0
magball/Magn 0

c =
magball/Magn magball/Magn magball/Magn

Controller (0 0 -1

d =
magball/Cont

Controller (0

Continuous-time model.

See Also findop, linoptions, operpoint, operspec

2-23

getstatestruct

Purpose Extract state structure from operating point

Syntax x_struct = getstatestruct(op_point)

Description x_struct = getstatestruct(op_point) extracts a structure of
state values, x_struct, from the operating point object, op_point.
The structure, x_struct, uses the same format as Simulink which
allows you to set initial values for states in the model within the Data
Import/Export pane of the Configuration Parameters dialog box.

Example Create an operating point object for the magball model:

op_magball=operpoint('magball');

Extract a state structure from the operating point object:

states_magball=getstatestruct(op_magball)

This returns

states_magball =

time: 0
signals: [1x4 struct]

To view the values of the states within this structure, use dot-notation
to access the values field:

states_magball.signals.values

This returns

ans =

0
0

2-24

getstatestruct

ans =

7.0036

ans =

0

ans =

0.0500

See Also getinputstruct, getxu, operpoint

2-25

getxu

Purpose Extract states and inputs from operating points

Syntax x = getxu(op_point)
[x,u] = getxu(op_point)
[x,u,xstruct] = getxu(op_point)

Description x = getxu(op_point) extracts a vector of state values, x, from the
operating point object, op_point. The ordering of states in x is the
same as that used by Simulink.

[x,u] = getxu(op_point) extracts a vector of state values, x, and a
vector of input values, u, from the operating point object, op_point.
The ordering of states in x, and inputs in u, is the same as that used
by Simulink.

[x,u,xstruct] = getxu(op_point) extracts a vector of state values,
x, a vector of input values, u, and a structure of state values, xstruct,
from the operating point object, op_point. The structure of state
values, xstruct, has the same format as that returned from a Simulink
simulation. The ordering of states in x and xstruct, and inputs in u, is
the same as that used by Simulink.

Example Create an operating point object for the magball model by typing

op=operpoint('magball');

To view the states within this operating point, type

op.States

which returns

(1.) magball/Controller/Controller
x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt

2-26

getxu

x: 0
(4.) magball/Magnetic Ball Plant/height

x: 0.05

To extract a vector of state values, with the states in the ordering that is
compatible with Simulink, along with inputs and a state structure, type

[x,u,xstruct]=getxu(op)

This returns

x =
0.0500

0
0

7.0036
0

u =
[]

xstruct =
time: 0

signals: [1x4 struct]

View xstruct in more detail by typing

xstruct.signals

This displays

1x4 struct array with fields:
values
dimensions
label
blockname

View each component of the structure individually. For example:

2-27

getxu

xstruct.signals(1).values

ans =

0
0

or

xstruct.signals(2).values

ans =

7.0036

You can import these vectors and structures into Simulink as initial
conditions or input vectors, or use them with setxu, to set state and
input values in another operating point.

See Also operpoint, operspec

2-28

initopspec

Purpose Initialize operating point specification values

Syntax opnew=initopspec(opspec,oppoint)
opnew=initopspec(opspec,x,u)
opnew=initopspec(opspec,xstruct,u)

Graphical
Interface

As an alternative to the initopspec function, initialize operating point
specification values in the Create Operating Points panel in the
Operating Points node within the Simulink Control Design GUI. See
“Computing Operating Points from Specifications”.

Description opnew=initopspec(opspec,oppoint) initializes the operating point
specification object, opspec, with the values contained in the operating
point object, oppoint. The function returns a new operating point
specification object, opnew. Create opspec with the function operspec.
Create oppoint with the function operpoint or findop.

opnew=initopspec(opspec,x,u) initializes the operating point
specification object, opspec, with the values contained in the state
vector, x, and the input vector, u. The function returns a new operating
point specification object, opnew. Create opspec with the function
operspec. You can use the function getxu to create x and u with the
correct ordering.

opnew=initopspec(opspec,xstruct,u) initializes the operating point
specification object, opspec, with the values contained in the state
structure, xstruct, and the input vector, u. The function returns a
new operating point specification object, opnew. Create opspec with
the function operspec. You can use the function getstatestruct
or getxu to create xstruct and the function getxu to create u with
the correct ordering. Alternatively, xstruct, can be saved to the
MATLAB workspace after a simulation of the model. See the Simulink
documentation for more information on these structures.

Example Create on operating point using findop by simulating the magball
model and extracting the operating point after 20 time units.

2-29

initopspec

oppoint=findop('magball',20)

This returns the following operating point.

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=20)

States:

(1.) magball/Controller/Controller

x: 5.28e-009
x: -2.56e-006

(2.) magball/Magnetic Ball Plant/Current
x: 6.99

(3.) magball/Magnetic Ball Plant/dhdt
x: -2.62e-005

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Inputs: None

Use these operating point values as initial values in an operating point
specification object.

opspec=operspec('magball');
newopspec=initopspec(opspec,oppoint)

The new operating point specification object is displayed.

Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

spec: dx = 0, initial guess: 5.28e-009
spec: dx = 0, initial guess: -2.56e-006

2-30

initopspec

(1.) magball/Magnetic Ball Plant/Current
spec: dx = 0, initial guess: 6.99

(1.) magball/Magnetic Ball Plant/dhdt
spec: dx = 0, initial guess: -2.62e-005

(1.) magball/Magnetic Ball Plant/height
spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs: None

You can now use this object to find operating points by optimization.

See Also findop, getstatestruct, getxu, operpoint, operspec

2-31

linearize

Purpose Create linearized model from Simulink model

Syntax lin=linearize('sys',op,io)
lin=linearize('sys',op,io,options)
lin_block=linearize('sys',op,'blockname')
lin=linearize('sys',op)
lin=linearize('sys',op,options)
[lin,op] = linearize('sys',snapshottimes);

Graphical
Alternative

As an alternative to the linearize function, create linearized models
using the Linearization Task node of the Simulink Control Design
GUI. See “Linearizing the Model”.

Description lin=linearize('sys',op,io) takes a model name, 'sys', an
operating point object, op, and an I/O object, io, as inputs and returns a
linear time-invariant state-space model, lin. The operating point object
is created with the function operpoint or findop. The linearization I/O
object is created with the function getlinio or linio. Both op and io
must be associated with the same Simulink model, sys.

lin=linearize('sys',op,io,options) takes a model name, 'sys',
an operating point object, op, an I/O object, io, and a linearization
options object, options, as inputs and returns a linear time-invariant
state-space model, lin. The operating point object is created with
the function operpoint or findop. The linearization I/O object is
created with the function getlinio or linio. Both op and io must
be associated with the same Simulink model, sys. The linearization
options object is created with the function linoptions and contains
several options for linearization.

lin_block=linearize('sys',op,'blockname') takes a model name,
'sys', an operating point object, op, and the name of a block in the
model, 'blockname', as inputs and returns lin_block, a linear
time-invariant state-space model of the named block. The operating
point object is created with the function operpoint or findop. Both op
and 'blockname' must be associated with the same Simulink model,

2-32

linearize

sys. You can also supply a fourth argument, options, to provide options
for the linearization. Create options with the function linoptions.

lin=linearize('sys',op) creates a linearized model, lin, of the
system 'sys' at the operating point, op. Root-level inport and outport
blocks in sys are used as inputs and outputs for linearization. The
operating point object, op, is created with the function operpoint or
findop. You can also supply a third argument, options, to provide
options for the linearization. Create options with the function
linoptions.

lin=linearize('sys',op,options) is the form of the linearize
function that is used with numerical-perturbation linearization. The
function returns a linear time-invariant state-space model, lin, of
the entire model, sys. The operating point object, op, is created with
the function operpoint or findop. The LinearizationAlgorithm
option must be set to 'numericalpert' within options for
numerical-perturbation linearization to be used. Create the variable
options with the linoptions function. The function uses inport and
outport blocks in the model as inputs and outputs for linearization.

[lin,op] = linearize('sys',snapshottimes); creates operating
points for the linearization by simulating the model, 'sys', and taking
snapshots of the system’s states and inputs at the times given in
the vector snapshottimes. The function returns lin, a set of linear
time-invariant state-space models evaluated and op, the set of operating
point objects used in the linearization. You can specify input and output
points for linearization by providing an additional argument such as
a linearization I/O object created with getlinio or linio, or a block
name. If an I/O object or block name is not supplied the linearization
will use root-level inport and outport blocks in the model. You can also
supply an additional argument, options, to provide options for the
linearization. Create options with the function linoptions.

Algorithms Linearization algorithm options are set with the function linoptions
and passed to the function linearize as an optional argument.

2-33

linearize

Example Open the Simulink model, magball, and insert linearization annotations
as shown in the following figure.

���������	�

Create an I/O object based on the linearization annotations, create an
operating point specification object for the model, and then find the
operating point using findop.

io=getlinio('magball');
op=operspec('magball');
op=findop('magball',op);

2-34

linearize

Compute a linear model of the magball system, based on the
linearization I/Os, io, and defined about the operating point, op, with
the command

lin=linearize('magball',op,io)

which returns

a =
magball/Magn magball/Magn magball/Magn

magball/Magn 0 0 1
magball/Magn 0 -100 0
magball/Magn 196.2 -2.801 0

b =
magball/Cont

magball/Magn 0
magball/Magn 50
magball/Magn 0

c =
magball/Magn magball/Magn magball/Magn

magball/Magn 1 0 0

d =
magball/Cont

magball/Magn 0

Continuous-time model.

The matrices, a, b, c, and d are the state-space matrices of the linear
system given by the following equations

2-35

linearize

�x t ax t bu t
y t cx t du t
() () ()
() () ()

= +
= +

where x(t) is a vector of states and u(t) is a vector of inputs to the system.

You can view the linearized model, lin, with the LTI Viewer

ltiview(lin)

which produces the following plot.

2-36

linearize

See Also findop, getlinio, operpoint, operspec, linio, linoptions, ltiview

2-37

linio

Purpose Construct linearization I/O settings for Simulink model

Syntax io=linio('blockname',portnum)
io=linio('blockname',portnum,type)
io=linio('blockname',portnum,type,openloop)

Graphical
Alternative

As an alternative to the linio function, create linearization I/O settings
by using the right-click menu on the model diagram. See “Inserting
Linearization Points”.

Description io=linio('blockname',portnum) creates a linearization I/O object for
the signal that originates from the outport with port number, portnum,
of the block, 'blockname', in a Simulink model. The default I/O type
is 'in', and the default OpenLoop property is 'off'. Use io with the
function linearize to create linearized models.

io=linio('blockname',portnum,type) creates a linearization I/O object
for the signal that originates from the outport with port number,
portnum, of the block, 'blockname', in a Simulink model. The
linearization I/O has the type given by type. A list of available types is
given below. The default OpenLoop property is 'off'. Use io with the
function linearize to create linearized models.

io=linio('blockname',portnum,type,openloop) creates a linearization
I/O object for the signal that originates from the outport with port
number, portnum, of the block, 'blockname', in a Simulink model. The
linearization I/O has the type given by type and the open loop status
is given by openloop. A list of available types is given below. The
openloop property is set to 'off' when the I/O is not an open loop point
and is set to 'on' when the I/O is an open loop point. Use io with the
function linearize to create linearized models.

Available linearization I/O types are

• 'in', linearization input point

• 'out', linearization output point

• 'inout', linearization input then output point

2-38

linio

• 'outin', linearization output then input point

• 'none', no linearization input/output point

To upload the settings in the I/O object to the Simulink model, use the
setlinio function.

Example Create a linearization I/O setting for the signal line originating from
the Controller block of the magball model.

io(1)=linio('magball/Controller',1)

This displays

Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
- No Loop Opening
- An Input Perturbation

By default, this I/O is an input point. Create a second I/O setting within
the object, io. This I/O originates from the Magnetic Ball Plant block, is
an output point, and is also an open loop point.

io(2)=linio('magball/Magnetic Ball Plant',1,'out','on')

The new object, io, is displayed.

Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
- No Loop Opening
- An Input Perturbation

Block magball/Magnetic Ball Plant, Port 1 is marked with the
following properties:

2-39

linio

- An Output Measurement
- A Loop Opening

See Also getlinio, linearize, setlinio

2-40

linoptions

Purpose Set options for linearization and finding operating points

Syntax opt=linoptions
opt=linoptions('Property1','Value1','Property2','Value2',...)

Graphical
Interface

As an alternative to the linoptions function, set options for
linearization and finding operating points with the Simulink Control
Design GUI. See “Changing Linearization Settings” and “Changing
Optimization Settings”.

Description opt=linoptions creates a linearization options object with the
default settings. The variable, opt, is passed to the functions findop
and linearize to specify options for finding operating points and
linearization.

opt=linoptions('Property1','Value1','Property2','Value2',...)
creates a linearization options object, opt, in which the option given
by Property1 is set to the value given in Value1, the option given by
Property2 is set to the value given in Value2, etc. The variable, opt,
is passed to the functions findop and linearize to specify options for
finding operating points and linearization.

The following options can be set with linoptions:

LinearizationAlgorithm Set to 'numericalpert' (default is 'blockbyblock') to
enable numerical-perturbation linearization (as in Simulink
3.0) where root level inports and states are numerically
perturbed. Linearization annotations are ignored and
root level inports and outports are used instead. The
'numericalpert' option is the only linearization algorithm
that works with models that contain references to other
models using the Model block.

SampleTime The time at which the signal is sampled. Nonzero for discrete
systems, 0 for continuous systems, -1 (default) to use the
longest sample time that contributes to the linearized model.

2-41

linoptions

UseFullBlockNameLabels Set to 'off' (default) to use truncated names for the
linearization I/Os and states in the linearized model. Set to
'on' to use the full block path to name the linearization I/Os
and states in the linearized models.

BlockReduction Set to 'on' (default) to eliminate from the linearized model,
blocks that are not in the path of the linearization, as in the
following figure. Set to 'off' to include these blocks in the
linearized model.

IgnoreDiscreteStates Set to 'on' to remove any discrete states from the linearization.
Set to 'off' (default) to include discrete states.

RateConversionMethod Set to 'zoh' (default) to use the zero order rate conversion
routine when linearizing a multirate system. Set to 'tustin'
to use the Tustin (bilinear) method. Set to 'prewarp' to use the
Tustin approximation with prewarping.

For more information, and examples, on methods and algorithms
for rate conversions and linearization of multi-rate models, see
the “Linearization of Multi-Rate Models” and “Rate Conversion
Method Selection for Linearization” demos listed under the
Simulink Control Design Demos in the demos browser or see the

2-42

linoptions

Continuous/Discrete Conversion of LTI Models section of the
Control System Toolbox documentation.

PreWarpFreq The critical frequency Wc (in rad/sec) used by the 'prewarp'
option when linearizing a multirate system.

NumericalPertRel Set the perturbation level for obtaining the linear model (default
value is 1e-5). The perturbation of the system’s states is
specified by

NumericalPertRel NumericalPertRel+ × ×−10 3 x The
perturbation of the system’s inputs is specified by
NumericalPertRel NumericalPertRel+ × ×−10 3 u .

NumericalXPert Individually set the perturbation levels for the system’s states
using an operating point object. Use the operpoint function to
create an operating point object for the model.

NumericalUPert Individually set the perturbation levels for the system’s inputs
using an operating point object. Use the operpoint function to
create an operating point object for the model.

OptimizationOptions Set options for use with the optimization algorithms. These
options are the same as those set with optimset. See the
Optimization Toolbox documentation for more information on
these algorithms. If you do not have the Optimization Toolbox,
you can access the documentation at

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.shtml

OptimizerType Set optimizer type to be used by trim optimization if the
Optimization Toolbox is installed. The available optimizer types
are

• graddescent_elim, the default optimizer, based on the
Optimization Toolbox function fmincon, enforces an equality
constraint to force time derivatives of states to be zero
(dx/dt=0, x(k+1)=x(k)) and constraints on output signals.
This optimizer fixes states, x, and inputs, u, by not allowing
these variables to be optimized.

2-43

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.shtml

linoptions

• graddescent, enforces an equality constraint to force time
derivatives of states to be zero (dx/dt=0, x(k+1)=x(k)) and
constraints on output signals. Minimize the error between the
desired (known) values of states, x, inputs, u, and outputs, y.
If there are no constraints on x, u, or y, findop will attempt
to minimize the deviation between the initial guesses for x
and u and the trimmed values.

• lsqnonlin fixes states, x, and inputs, u, by not allowing
these variables to be optimized. The algorithm then tries to
minimize the error in dx/dt and outputs, y.

• simplex uses the same cost function as lsqnonlin with the
fminsearch optimization routine.

See the Optimization Toolbox documentation for more
information on these algorithms. If you do not have the
Optimization Toolbox, you can access the documentation at
www.mathworks.com/support/.

DisplayReport Set to 'on' to display the operating point summary report when
running findop. Set to 'off' to suppress the display of this
report

See Also findop, linearize

2-44

operpoint

Purpose Create operating point for Simulink model

Syntax op = operpoint('sys')

Graphical
Interface

As an alternative to the operpoint function, create operating points
in the Operating Points node of the Simulink Control Design GUI.
See “Specifying Operating Points”.

Description op = operpoint('sys') returns an object, op, containing the
operating point of a Simulink model, sys. Use the object with the
function linearize to create linearized models. The operating point
object properties are

• “Model” on page 2-45

• “States” on page 2-45

• “Inputs” on page 2-46

• “Time” on page 2-46

Edit the properties of this object directly or with the set function.

Model

Model specifies the name of the Simulink model that this operating
point object refers to.

States

States describes the operating points of states in the Simulink model.
The States property is a vector of state objects that contains the
operating point values of the states. There is one state object per block
that has a state in the Simulink model. The States object has the
following properties:

Nx Number of states in the block. This property is
read-only.

Block Block that the states are associated with

2-45

operpoint

x Vector containing the values of states in the block

Ts Vector containing the sample time and offset for the
state

SampleType CSTATE for a continuous state or DSTATE for a discrete
state

inReferencedModel1 when the state is inside a referenced model or 0
when it is not

Description String describing the block

Inputs

Inputs is a vector of input objects that contains the input levels at the
operating point. There is one input object per root level inport block in
the Simulink model. The Inputs object has the following properties:

Block Inport block that the input vector is associated with

PortWidth Width of the corresponding inport

u Vector containing the input level at the operating point

Description String describing the input

Time

Time specifies the time at which any time-varying functions in the
model are evaluated.

Example To create an operating point object for the Simulink model magball, type

op = operpoint('magball')

which returns

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

2-46

operpoint

States:

(1.) magball/Controller/Controller

x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

Inputs: None

MATLAB displays the name of the model, the time at which any
time-varying functions in the model are evaluated, the names of blocks
containing states, and the values of the states at the operating point. In
this example there are four blocks that contain states in the model and
four entries in the States object. The first entry contains two states.
MATLAB also displays the Inputs although there are not any in this
model. To view the properties of op in more detail, use the get function.

See Also get, linearize, operspec, set, update

2-47

operspec

Purpose Create operating point specifications for Simulink model

Syntax op_spec = operspec('sys')

Graphical
Alternative

As an alternative to the operspec function, create operating point
specifications in the Operating Points node of the Simulink Control
Design GUI. See “Computing Operating Points from Specifications”.

Description op_spec = operspec('sys') returns an operating point specification
object, op, for a Simulink model, sys. Edit the default operating
point specifications directly or use get and set. Use the operating
point specifications object with the function findop to find operating
points based on the specifications. Use these operating points with the
function linearize to create linearized models.

The operating point specification object properties are

• “Model” on page 2-48

• “States” on page 2-48

• “Inputs” on page 2-50

• “Time” on page 2-50

• “Outputs” on page 2-50

Use the set function to edit the properties of this object before running
findop.

Model

Model is the name of the Simulink model that this operating point
specification object is associated with.

States

States describes the operating point specifications for states in the
Simulink model. The States property is a vector of state objects that
each contain specifications for particular states. There is one state

2-48

operspec

specification object per block that has a state in the model. The States
object has the following properties:

Block Block that the states are associated with

x Vector containing values of states in the block. Set
the corresponding value of Known to 1 when these
values are known operating point values. Set the
corresponding values of Known to 0 when these values
are initial guesses for the operating point values.
The default value of x is the initial condition value
for the state.

Nx Number of states in the block. This property is
read-only.

Ts Vector containing the sample time and offset for the
state

SampleType CSTATE for a continuous state or DSTATE for a discrete
state

inReferencedModel1 when the state is inside a referenced model or 0
when it is not

Known Vector of values set to 1 for states whose operating
points are known exactly and set to 0 for states whose
operating points are not known exactly. Set the
operating point values themselves in the x property.

SteadyState Vector of values set to 1 for states whose operating
points should be at equilibrium and set to 0 for states
whose operating points are not at equilibrium. The
default value of SteadyState is 1.

Min Vector containing the minimum values of the
corresponding state’s operating point

Max Vector containing the maximum values of the
corresponding state’s operating point

Description String describing the block

2-49

operspec

Inputs

Inputs is a vector of input specification objects that contains
specifications for the input levels at the operating point. There is one
input specification object per root level inport block in the Simulink
model. The Inputs object has the following properties:

Block The inport block that the input vector is associated
with

PortWidth Width of the corresponding inport

u Vector containing values of inputs. Set the
corresponding value of Known to 1 when these
values are known operating point values. Set the
corresponding values of Known to 0 when these values
are initial guesses for the operating point values.

Known Vector of values set to 1 for inputs whose operating
points are known exactly and set to 0 for inputs
whose operating points are not known exactly. Set
the operating point values themselves in the u
property.

Min Vector containing the minimum values of the
corresponding input’s operating point

Max Vector containing the maximum values of the
corresponding input’s operating point

Description String describing the input

Time

Time specifies the time at which any time-varying functions in the
model are evaluated.

Outputs

Outputs is a vector of output specification objects that contains the
specifications for the output levels at the operating point. There is one
output specification object per root level outport block in the Simulink

2-50

operspec

model. To constrain additional outputs, use the addoutputspec
function to add an another output specification to the operating point
specification object. The Outputs object has the following properties:

Block Outport block that the output vector is associated
with

PortWidth Width of the corresponding outport

PortNumber Port number that the output is associated with

y Vector containing values of outputs. Set the
corresponding value of Known to 1 when these
values are known operating point values. Set the
corresponding values of Known to 0 when these values
are initial guesses for the operating point values.

Known Vector of values set to 1 for outputs whose operating
points are known exactly and set to 0 for outputs
whose operating points are not known exactly. Set
the operating point values themselves in the y
property.

Min Vector containing the minimum values of the
corresponding output’s operating point

Max Vector containing the maximum values of the
corresponding output’s operating point

Description String describing the output

Example To create an operating point specification object for the Simulink model
magball, type

op_spec = operspec('magball')

which returns

Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

2-51

operspec

States:

(1.) magball/Controller/Controller

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(2.) magball/Magnetic Ball Plant/Current
spec: dx = 0, initial guess: 7

(3.) magball/Magnetic Ball Plant/dhdt
spec: dx = 0, initial guess: 0

(4.) magball/Magnetic Ball Plant/height
spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs: None

MATLAB displays the name of the model, the time at which any
time-varying functions in the model are evaluated, the names of
blocks containing states, default operating point values and initial
guesses (based on initial conditions of the states), and steady-state
specifications. In this example there are four blocks that contain
states in the model and four entries in the States object. The first
entry contains two states. By default, MATLAB sets the SteadyState
property to 1 and the upper and lower bounds on the operating points
to Inf and -Inf respectively. MATLAB also displays the Inputs
and Outputs although there are not any in this model. To view the
properties of op in more detail, use the get function.

See Also addoutputspec, findop, get, operspec, linearize, set , update

2-52

set

Purpose Set properties of linearization I/Os and operating points

Syntax set(ob)
set(ob,'PropertyName',val)
ob.PropertyName=val

Graphical
Interface

As an alternative to the set function, set properties of linearization
I/Os and operating points in the Simulink Control Design GUI. See
“Inspecting Analysis I/Os” and “Specifying Operating Points”.

Description set(ob) displays all editable properties of the object, ob, which can be
a linearization I/O object, an operating point object, or an operating
point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

set(ob,'PropertyName',val) sets the property, PropertyName, of the
object, ob, to the value, val. The object, ob, can be a linearization I/O
object, an operating point object, or an operating point specification
object. Create ob using findop, getlinio, linio, operpoint, or
operspec.

ob.PropertyName=val is an alternative notation for assigning the value,
val, to the property, PropertyName, of the object, ob. The object, ob, can
be a linearization I/O object, an operating point object, or an operating
point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

Examples Create an operating point object for the Simulink model, magball.

op_cond=operpoint('magball');

Use the set function to get a list of all editable properties of this object.

set(op_cond)

This returns the properties of op_cond.

ans =

2-53

set

Model: {}
States: {}
Inputs: {}

Time: {}

To set the value of a particular property of op_cond, provide the
property name and the desired value of this property as arguments to
set. For example, to change the name of the model associated with the
operating point object from 'magball' to 'Magnetic Ball', type

set(op_cond,'Model','Magnetic Ball')

To view the property value and verify that the change was made type

op_cond.Model

which returns

ans =
Magnetic Ball

Since op_cond is a structure, you can set any properties or fields using
dot-notation. First produce a list of properties of the second States
object within op_cond.

set(op_cond.States(2))
ans =

Nx: {}
Block: {}

x: {}
Ts: {}

SampleType: {}
inReferencedModel: {}

Description: {}

Now, use dot-notation to set the x property to 8.

op_cond.States(2).x=8;

2-54

set

To view the property and verify that the change was made, type

op_cond.States(2)

which displays

(1.) magball/Magnetic Ball Plant/Current
x: 8

See Also findop, get, linio, operpoint, operspec, setlinio

2-55

setlinio

Purpose Assign I/O settings to Simulink model

Syntax oldio=setlinio('sys',io)

Graphical
Interface

As an alternative to the setlinio function, edit linearization I/Os in
the Analysis I/Os panel of the Linearization Task node within the
Simulink Control Design GUI. See “Inspecting Analysis I/Os”.

Description oldio=setlinio('sys',io) assigns the settings in the vector of
linearization I/O objects, io, to the Simulink model, sys, where they
are represented by annotations on the signal lines. Use the function
getlinio or linio to create the linearization I/O objects. You can
save I/O objects to disk in a MAT-file and use them later to restore
linearization settings in a model.

Example Before assigning I/O settings to a Simulink model using setlinio,
you must create a vector of I/O objects representing linearization
annotations, such as input points or output points, on a Simulink model.

Open the Simulink model magball by typing

magball

at the MATLAB prompt. Right-click the signal line between the
Magnetic Ball Plant and the Controller. Select Linearization
Points > Output Point from the menu to place an output point on this
signal line. A small arrow pointing away from a small circle just above
the signal line represents the output point. Right-click the signal line
after the Magnetic Ball Plant. Select Linearization Points > Output
Point from the menu to place another output point on this signal line.
The model diagram should now look like that in the following figure.

2-56

setlinio

��������	���

Create an I/O object with the getlinio function.

io=getlinio('magball')

Make changes to io by editing the object or by using the set function.
For example:

io(1).Type='in';
io(2).OpenLoop='on';

Assign the new settings in io to the model diagram.

2-57

setlinio

oldio=setlinio('magball',io)

This returns the old I/O settings (that have been replaced by the
settings in io).

Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
- An Output Measurement
- No Loop Opening

Block magball/Magnetic Ball Plant, Port 1 is marked with the
following properties:
- An Output Measurement
- No Loop Opening

The model diagram should now look like that in the following figure.

2-58

setlinio

��������	��
��������

�	����	���	����������	���

See Also get, getlinio, linio, set

2-59

setxu

Purpose Set states and inputs in operating points

Syntax op_new=setxu(op_point,x,u)

Graphical
Alternative

As an alternative to the setxu function, set states and inputs of
operating points with the Simulink Control Design GUI. See “Importing
Operating Points” for more information.

Description op_new=setxu(op_point,x,u) sets the states and inputs in the
operating point, op_point, with the values in x and u. A new operating
point containing these values, op_new, is returned. The variable x can
be a vector or a structure with the same format as those returned from a
Simulink simulation. The variable u can be a vector. Both x and u can be
extracted from another operating point object with the getxu function.

Example Open the Simulink model F14 by typing f14 at the command line. Select
Simulation > Configuration Parameters > Data Import/Export.
In the Save to workspace panel, select Final states. In the Save
options panel, select Structure from Format. This will save the final
states of the model to the workspace after a simulation.

Start the simulation. After it has run, a new variable, xFinal, should
be in the workspace. This variable is a structure with two properties,
time and signals.

Create an operating point object for F14 by typing

op_point=operpoint('f14')

Note that all states are initially set to 0. Set the states in this object to
be the values in xFinal. Set the input to be 9.

newop=setxu(op_point,xFinal,9)

The new operating point is displayed

Operating Point for the Model f14.
(Time-Varying Components Evaluated at time t=0)

2-60

setxu

States:

(1.) f14/Actuator Model

x: -0.032
(2.) f14/Aircraft Dynamics Model/Transfer Fcn.1

x: 0.56
(3.) f14/Aircraft Dynamics Model/Transfer Fcn.2

x: 678
(4.) f14/Controller/Alpha-sensor Low-pass Filter

x: 0.392
(5.) f14/Controller/Pitch Rate Lead Filter

x: 0.133
(6.) f14/Controller/Proportional plus integral compensator

x: 0.166
(7.) f14/Controller/Stick Prefilter

x: 0.1
(8.) f14/Dryden Wind Gust Models/Q-gust model

x: 0.114
(9.) f14/Dryden Wind Gust Models/W-gust model

x: 0.46
x: -2.05

Inputs:

(1.) f14/u

u: 9

See Also getxu, initopspec, operpoint, operspec

2-61

update

Purpose Update operating point object with structural changes in model

Syntax update(op)

Graphical
Alternative

As an alternative to the update function, update operating point objects
with the Sync with Model button in the Simulink Control Design
GUI. See “Specifying Operating Points” for more information.

Description update(op) updates an operating point object, op, to reflect any
changes in the associated Simulink model, such as states being added
or removed.

Example Open the magball model

magball

Create an operating point object for the model.

op=operpoint('magball')

This returns

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller

x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

2-62

update

Inputs: None

Add an Integrator block to the model, as shown in the following figure.

Update the operating point to include this new state.

update(op)

The new operating point is shown below.

Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

2-63

update

(1.) magball/Controller/Controller
x: 0
x: 0

(2.) magball/Magnetic Ball Plant/Current
x: 7

(3.) magball/Magnetic Ball Plant/dhdt
x: 0

(4.) magball/Magnetic Ball Plant/height
x: 0.05

(5.) magball/Integrator
x: 0

Inputs: None

See Also operpoint, operspec

2-64

3

Blocks — Alphabetical List

Trigger-Based Operating Point Snapshot

Purpose Generate operating points and/or linearizations at triggered events

Library Simulink Control Design

Description Attach this block to a signal in a model when you want to take a
snapshot of the system’s operating point at triggered events such as
when the signal crosses zero or when the signal sends a function call.
You can also perform a linearization at these events. To extract the
operating point or perform the linearization you need to simulate
the model using either the findop or linearize functions, or the
simulation snapshots option in the Control and Estimation Tools
Manager.

Choose the trigger type in the Block Parameters dialog box, as shown
below. The possible trigger types are

• rising: the signal crosses zero while increasing

• falling: the signal crosses zero while decreasing

• either: the signal crosses zero while either increasing or decreasing

• function-call: the signal send a function call

See Also findop, linearize

3-2

Index

IndexA
addoutputspec function 2-2

C
copy function 2-5

F
findop function 2-7

G
get function 2-14
getinputstruct function 2-17
getlinio function 2-18
getlinplant function 2-22
getstatestruct function 2-24
getxu function 2-26

I
initopspec function 2-29

L
linearize function 2-32
linio function 2-38
linoptions function 2-41

O
operpoint function 2-45
operspec function 2-48

S
set function 2-53
setlinio function 2-56
setxu function 2-60

U
update function 2-62

Index-1

	toc
	Functions — Categorical List
	Linearization Analysis I/Os
	Operating Points
	Linearization

	Functions — Alphabetical List
	Blocks — Alphabetical List
	Index

